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Efficient blood pressure (BP) monitoring in everyday contexts stands as a substantial public health challenge that has garnered
considerable attention from both industry and academia. Commercial mobile phones have emerged as a promising tool for BP
measurement, benefitting from their widespread popularity, portability, and ease of use. Most mobile phone-based systems
leverage a combination of the built-in camera and LED to capture photoplethysmography (PPG) signals, which can be used
to infer BP by analyzing the blood flow characteristics. However, due to low Signal-to-Noise (SNR), various factors such as
finger motion, improper finger placement, skin tattoos, or fluctuations in environmental lighting can distort the PPG signal.
These distortions consequentially affect the performance of BP estimation. In this paper, we introduce a novel sensing system
that utilizes the built-in accelerometer of a mobile phone to capture seismocardiography (SCG) signals, enabling accurate BP
measurement. Our system surpasses previous mobile phone-based BP measurement systems, offering advantages such as high
SNR, ease of use, and power efficiency. We propose a triple-stage noise reduction scheme, integrating improved complete
ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), recursive least squares (RLS) adaptive filter, and
soft-thresholding, to effectively reconstruct high-quality heartbeat waveforms from initially contaminated raw SCG signals.
Moreover, we introduce a data augmentation technique encompassing normalization coupled with temporal-sliding, effectively
augmenting the diversity of the training sample set. To enable battery efficiency on smartphone, we propose a resource-efficient
deep learning model that incorporates resource-efficient convolution, shortcut connections, and Huber loss. We conduct extensive
experiments with 70 volunteers, comprising 35 healthy individuals and 35 individuals diagnosed with hypertension, under a
user-independent setting. The excellent performance of our system demonstrates its capacity for robust and accurate daily BP
measurement.
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1 INTRODUCTION
Hypertension, also known as high blood pressure, is a medical condition characterized by the elevated force

exerted by blood against the walls of the arteries as it circulates throughout the body [23]. The World Health

Organization reports that an estimated 1.28 billion adults aged 30 to 79 globally suffer from hypertension [1].

This condition is responsible for 7.5 million deaths annually, constituting 12.8% of all global deaths. Notably,

hypertension is often asymptomatic, significantly hindering early detection. Consequently, monitoring BP in our

daily lives is a substantial public health challenge that has garnered considerable attention from both the industrial

and academic sectors.

Fig. 1. Typical application scenario of our system for BP measurement.

BP measurement in the consumer market is commonly done through the automatic oscillometric method[55, 61].

However, limitations in daily monitoring arise from the fact that users usually use arm cuff-based measurements.

Arm-cuff-based devices are generally inconvenient to operate, especially for elderly people who may feel discomfort

or tightness during measurements. Some hypertensive patients require multiple blood pressure measurements, i.e.,

20 times in a day [52], to mitigate the risk of stroke, but measurements in a day may cause tissue hypoxia risk

[9, 28].

Many efforts in the academic community have emerged to measure BP, focusing primarily on two main schemes:

contact-based and contact-free. For contact-based BP measurement, PPG systems [27, 68] have become prevalent

due to the attributes of the pulse wave associated with BP, including characteristics such as peak value, rising time,

and the first inflection point [7]. In the pursuit of this objective, various BP measurement systems have successfully

demonstrated the utility of pulse-related physiological signals, which are typically derived from specialized devices

[10, 12, 59], such as wristwatches or finger cuffs. Despite the promise of these methodologies, certain limitations

persist. First, these systems demand that the user remains completely stationary to capture data with an extremely

low signal-to-noise ratio (SNR), a requirement often challenging to meet in real-life scenarios. Furthermore, the

requirement for users to wear these devices can lead to discomfort and inconvenience, which presents a significant

challenge to the broader implementation and acceptance of these technologies. The contact-free schemes leverage
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mainly on wireless signals, e.g., millimeter wave [37, 58] and continuous wave [8], to detect subtle changes in the

skin resulting from pulse activity, thereby effectively deriving BP measurements. However, most of them involve

costly, dedicated instruments, rendering them far from practical use. Furthermore, these stationary devices operate

only when users are within a specific area, hindering the possibility of location-independent daily BP monitoring.

Recently, commercial mobile phones have emerged as an ideal alternative for BP measurement, owing to

widespread popularity, portability. Most mobile phone-based systems utilize a combination of built-in cameras

and LEDs to capture PPG signals, which can be leveraged to infer BP by analyzing the blood flow characteristics

[6, 20, 23, 25, 47]. However, the pulsatile component in mobile phone’s camera signals accounts for just 1% of

the total intensity, resulting in a low SNR for the PPG signal. Various factors such as finger motion, improper

finger placement, skin tattoos, or changes in environmental lighting can distort the PPG signal, thereby affecting

subsequent BP estimation [23]. Mitigating these adverse effects can be partially achieved through the integration of

signals from other built-in sensors, such as microphone [40] or accelerometer [64]. However, manual intervention

is needed to synchronize these multiple sensors prior to each measurement, which is inconvenient, particularly for

the elderly. In this paper, we introduce a novel sensing system that utilizes the built-in accelerometer of a mobile

phone to capture SCG signals, enabling accurate BP measurement. The critical insight lies in the fact that SCG

signals are highly sensitive to dynamic changes, enabling them to effectively capture the various phases of the

cardiac cycle, including both systolic and diastolic states. This characteristic forms the basis for accurate BP. Our

system surpasses previous mobile phone-based BP measurement systems, offering advantages such as high SNR,

ease of use, and power efficiency. We have created a promising scenario for the everyday monitoring of BP, where

a user can simply press the mobile phone against his/her chest anytime and anywhere, as illustrated in Fig. 1, and

the system will quickly measure BP and record the data in the user’s health profile. This approach will facilitate

early detection and screening for cardiovascular diseases.

Despite promising, several challenges need to be addressed before enabling the functional system. The first

challenge is to reconstruct high-quality heartbeat waveforms from raw SCG signals. During the signal acquisition

process, the acceleration data includes the heartbeat signal as well as noise from the system, respiration, and

motion artifacts, all of which may distort the waveform characteristics. To address this challenge, we propose a

triple-stage noise reduction scheme: i) reduce the effects of movement artifacts through the ICEEMDAN method,

ii) further filter out the effect of residual movement noise to clarify the heartbeat pattern using the RLS adaptive

filter, and iii) remove the residual minor spike noise (e.g., system noise) using the soft-thresholding method. The

second challenge is the lack of training samples, which may be costly to collect manually. Instead, we collect a

limited amount of raw data only and use two-step data augmentation techniques to enhance its diversity. We first

normalize the data to eliminate the influence of gravity and pressure based on the observation that these factors

only affect the magnitude or range of acceleration changes, not the pattern of change. We then implement the

temporal-sliding approach to increase the temporal sampling, which involves multiplying the original data points

with a sliding window of fixed amplitude. This approach is motivated by our observation that different sample

starting points can significantly impact the pattern of the data. The third challenge is to develop a lightweight yet

high-precision BP measurement model, capable of functioning on resource-constrained commercial smartphones.

State-of-the-art deep learning models with complex multiple-layer model structures, such as ResNet50, result in

considerable resource overhead. When deployed to smartphones, they can lead to substantial memory footprints

and increased latency, and may easily yield overfitting with an accuracy drop. A possible solution is to involve

employing models with fewer layers, such as LeNet with only two convolutional layers. However, it may result in

underfitting and compromised accuracy due to the restricted number of layers. To address these challenges, we

introduce a novel, resource-efficient BP model that facilitates lightweight model deployment while maintaining

high accuracy and robustness on smartphones. Specially, we employ a suite of techniques to substantially reduce

resource overhead and enhance the overall performance of the BP model, including resource-efficient convolution,

shortcut connections, and Huber loss.
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In summary, this paper makes the following contributions.

• To the best of our knowledge, we are the first to create a highly accurate BP measurement system solely

relying on the built-in accelerometer of a mobile phone. Our system is superior to previous mobile phone-based

BP methods, providing advancements such as high SNR, ease of use, and energy efficiency. We’ve established a

promising scenario for daily BP monitoring that requires only pressing a mobile phone against the chest anytime

and anywhere. The system swiftly measures BP, stores the data in the user’s health profile, and aids in the early

detection and screening of cardiovascular diseases.

• We propose a triple-stage noise reduction scheme, consisting of ICEEMDAN, RLS adaptive filter, and soft-

thresholding, to effectively reconstruct high-quality heartbeat waveforms from contaminated raw SCG signals.

Moreover, we introduce a data augmentation technique, encompassing normalization coupled with temporal-
sliding, effectively augmenting the diversity of the training sample set. To enable battery efficiency on smartphone,

we propose a resource-efficient deep learning model that incorporates resource-efficient convolution, shortcut

connections, and Huber loss.

• We successfully implement our system on Android smartphones and conduct extensive experiments with 70

volunteers––35 healthy individuals and 35 individuals diagnosed with hypertension––in a user-independent setting.

The results reveal that the mean error (ME) and standard deviation (SD) for diastolic blood pressure (DBP) are

0.93 mmHg and 5.27 mmHg, respectively. For systolic blood pressure (SBP), the ME and SD are 1.81 mmHg

and 5.91 mmHg, respectively. The results demonstrate that our system is capable of robust and accurate daily BP

measurement.

2 RELATED WORK

Contact-based BP measurement: The mercury sphygmomanometer method is currently the gold standard for

contact-based BP measurement [38, 54]. This technique involves a BP cuff with an attached airbag, which is

progressively inflated on the upper arm to halt arterial blood flow. Gradual deflation of the airbag, followed by

the placement of a stethoscope on the brachial artery, allows medical practitioners to measure both systolic and

diastolic pressures. However, due to its complexity and the requirement for trained medical personnel, this method

is impractical for everyday use. Another contact-based BP measurement technique available in the consumer market

is the automatic oscillometric method [55, 61]. This approach involves attaching a cuff to the arm, injecting gas,

and then methodically releasing the gas while monitoring arterial pressure to measure BP. However, its application

in daily monitoring is limited as users typically rely on arm cuff-based measurements. PPG systems [27, 68] have

gained popularity due to their ability to analyze pulse wave attributes associated with BP [7]. A lot of efforts have

been devoted to exploring the feasibility of estimating BP based on pulse-related physiological signals, which are

captured using specialized devices [10, 12, 59], e.g., wrist-worn devices, finger cuffs. Cao et al. [9] demonstrate that

a single PPG sensor embedded in wrist-worn devices can effectively produce arterial blood pressure measurements.

BioWatch [62] employs both ECG and PPG to measure the proximal and distal timing of blood flow for BP

monitoring, respectively. Similarly, Huynh et al. [34] introduce a wrist-worn device that uses bioimpedance and

PPG to determine pulse transit time for BP measurement. Yousefian et al. [69] propose combining PPG and

ballistocardiogram (BCG) signals acquired at the wrist for blood pressure measurement. Chang et al. [13] propose

that the SCG signals, captured by dedicated accelerometers embedded in a chest strap, can also be used for inferring

blood pressure. However, these systems require the user to keep completely stationary while collecting samples,

which is challenging to fulfill in practical settings. Moreover, the experience of wearing these devices can result

in discomfort and inconvenience for the users. Therefore, it is challenging to enable broader implementation and

acceptance of these technologies. In comparison, our system is deployed on the commodity smartphone. The user

simply needs to press the phone against their chest to immediately acquire blood pressure readings, making it
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highly convenient and user-friendly for adoption. Additionally, we have implemented a triple-stage noise reduction

scheme to effectively mitigate the negative effects of movement artifacts.

Contact-free BP measurement: Contact-free methods predominantly rely on variations in wireless signals, such

as millimeter wave [37, 41, 42, 45, 56, 58, 66] and continuous wave [8, 73], and ultra-wideband signals [43] to

detect subtle skin changes caused by pulse activity, effectively deriving BP measurements. For example, Kawasaki

et al. use millimeter-wave sensors to extract time-domain features for BP estimation [41]. Similarly, Shi et al.
investigate the estimation of systolic BP by leveraging the reflective properties of millimeter waves [57]. Kim [43]

proposes a radio frequency-based system that collects and processes ultra-wideband signals to extract key features

for BP measurement. Zhao et al. [73] develop a Doppler radar-based BP measurement system by processing

continuous wave signals. However, most of these approaches require expensive, specialized equipment, making

them impractical for widespread use. Additionally, these stationary devices only operate when users are within a

specific area, limiting the potential for location-independent daily BP monitoring. In contrast, our system, deployed

on smartphones, is not limited by the user’s location.

Mobile phone based BP measurement: Commercial mobile phones have emerged as a promising modality for BP

measurement due to their ubiquity and portability. Most mobile phone-based systems employ a combination of built-

in cameras and LEDs to capture PPG signals, which can be used to infer BP by analyzing blood flow characteristics

[6, 20, 23, 25, 47]. However, the pulsatile component of the camera signals in mobile phones is small, resulting in

a low SNR for the PPG signal. Several factors, such as finger motion, incorrect finger positioning, skin tattoos, and

fluctuations in environmental lighting, can adversely affect the PPG signal, affecting the subsequent BP estimation

[23]. Combining PPG with other embedded modalities, including microphones [40] and accelerometers [64], may

counteract the negative impact. However, the PPG based BP system faces two significant limitations. Firstly, each

measurement necessitates manual synchronization of multiple modalities, which is inconvenient. Secondly, the

frequent activation of LED lights not only accelerates battery depletion but may also cause discomfort to users,

especially in low-light environments. Other mobile phone-based systems rely on fingertip oscillometry to estimate

BP [11, 65]. As a user presses the finger against the smartphone, the external pressure on the underlying artery

gradually rises, while the phone concurrently measures the applied pressure and blood volume oscillations. The

smartphone provides visual feedback to guide the user in applying the correct pressure and instantly calculates the

BP. However, these methods require either adding extra hardware to the smartphone, such as PPG and force sensors,

or using the smartphone in conjunction with other hardware, like a plastic clip, both may be impractical for daily

use. In contrast to previous systems, we present a novel sensing system that leverages the built-in accelerometer of

a smartphone to capture SCG signals, enabling accurate BP measurement. This approach offers several advantages,

such as high SNR, ease of use, and power efficiency.

3 FEASIBILITY STUDY
Seismocardiography (SCG) is a non-invasive method that gathers information by tracking the vibrations of the

chest collected by accelerometers. SCG signals reflect the heart’s mechanical activities by capturing the timing and

duration of both the systolic (the contraction of the heart muscle) and diastolic (the refilling of the heart) motions.

As shown in Fig. 2, there are generally seven stages in a whole cardiac cycle [19, 21, 24, 35]. The first stage is atrial

contraction (ATC). During this stage, the atrial muscles contract, pushing blood from the atria to the ventricles. The

second stage is mitral valve closure (MC). This stage signifies a swift surge in intraventricular pressure, causing

the mitral valve to shut and, thus, preventing the backflow of blood into the atria. The third stage is aortic valve

opening (AO). When ventricular pressure exceeds that in the aorta, the aortic valve opens, allowing blood to flow

from the ventricles into the aorta and then throughout the body. The fourth stage is maximal blood acceleration in

the aorta (MA). In this stage, the heart muscle undergoes contraction, instigating a swift ejection of blood from the

left ventricle into the aorta. The fifth stage is aortic valve closure (AC). This stage signifies the cessation of the
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Fig. 2. Stages of full heartbeat motion within a cardiac cycle.

heart’s systolic stage and the initiation of the diastolic phase. The next stage is mitral valve opening (MO). This

triggers the flow of blood from the left atrium into the left ventricle, indicating the commencement of the filling

phase in the cardiac cycle. The last stage is referred to rapid filling of the left ventricle (RF). In this stage, a rapid

influx of blood from the atrium into the ventricle is facilitated due to the higher BP in the left atrium compared to

the left ventricle.

The events of the cardiac cycle corresponding to the positive or negative peaks can be discernibly pinpointed

through SCG signals procured by standalone accelerometers, such as SCA610-C21H1 A [53] and LIS3DSH [13],

as depicted in Fig. 2. Given that most mobile devices come standard with accelerometers, the potential to measure

SCG signals by simply positioning the phone against the chest is promising [44, 49, 60]. As depicted in Fig. 3,

we vertically press the phone against the chest and hold our breath for 5 seconds. In examining the measurements

from the accelerometer’s X, Y, and Z axes, we find that the Y-axis waveform displays more pronounced periodicity

compared to the other axes. This characteristic is likely due to the heart’s primary activity occurring along the

Y-axis. In comparison, the components of heart motion in the X and Z axes are less significant, making the effects

of noise more noticeable. Consequently, since the composite amplitude
√
𝑋 2 + 𝑌 2 + 𝑍 2 combines the outcomes

from these three directions, it naturally has a weaker performance in capturing heart movement compared to the

results obtained in the Y-axis. Our data from Y-axis reveal a signal with an SD of 0.04m s−2 during the cardiac

cycle, in contrast to an SD of 0.01m s−2 in a fully static state. Consequently, this significant SNR is more than

adequate to capture the various events within each cardiac cycle. Therefore, we utilize the Y-axis readings of the

accelerometer for measuring blood pressure.

The above results adequately demonstrate that the accelerometer in a smartphone is capable of capturing cardiac

activity for further analysis. Besides, since previous research has employed a range of custom-made wearable

devices to investigate the pronounced correlation between certain waveform characteristics, such as wave amplitude

and time intervals, in various signals (including PPG [9], Ballistocardiography (BCG) [69], and SCG [13]) and

BP. The above analysis implies the significant feasibility to predict BP using waveform attributes of SCG signals

collected from built-in accelerometers in smartphones.

4 TRIPLE-STAGE NOISE REDUCTION
In this section, our concentration is directed toward the extraction of meaningful cardiac patterns from the SCG

measurements, which are encumbered by various sources of noise, inclusive of system noise, respiratory activity,

and movement artifacts (e.g., physiologic tremor and sudden unintentional flutter).
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Fig. 3. SCG signals captured from the X, Y, and Z axes by the built-in accelerometer of a mobile phone.

4.1 ICEEMDAN-based Heartbeat Extraction
The first step is to extract the heartbeat pattern from the contaminated SCG measurements, as shown in Fig. 4(a).

In this scenario, we instruct a subject to sit with a phone in hand, pressed against chest, and to suddenly perform a

hand trembling operation between 2nd and 3rd seconds. Since the mixed SCG signal is nonlinear and unstable

signals, the basic insight is to decompose the mixed signal into different components with various motion patterns.

The commonly used method involves using wavelet transforms, e.g., discrete wavelet transform (DWT) [31] and

stationary wavelet transform (SWT) [51], to decompose the signal into components within different frequency

ranges by selecting specific wavelet functions. However, the decomposition performance of wavelets relies heavily

on the basis wavelet function, which is challenging to reflect the intrinsic characteristics of SCG signals from

various subjects.

In our system, we utilize empirical mode decomposition (EMD) [33]—an adaptive technique well-suited for

non-stationary and nonlinear time-varying sequence analysis. Instead of a specified basis function in wavelet-based

method, EMD decomposes the temporal sequences into a succession of independent time-frequency components,

which is called intrinsic mode function (IMF), aiding in the extraction of heartbeat patterns. This is mainly due to

that the IMF components are instantaneous frequency components, representing local characteristics of the original

signal at various time scales, making EMD exceptionally suitable for the analysis of non-linear and non-stationary

data.

However, this introduces a potential challenge in EMD, referred to as “mode mixing”. Here, disparate scale

oscillations can occur within the same mode, or similarly scaled oscillations may manifest across different modes,

complicating the extraction of heartbeat patterns. Building upon EMD, the Complete Ensemble empirical mode

decomposition with adaptive noise (CEEMDAN) technique [63] has been proposed as a resolution to the mode-

mixing problem, achieved through the integration of adaptive white noise. Nonetheless, this method grapples

with two significant issues: residual noise within the modes and the emergence of spurious modes during the
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decomposition process. An advancement of EMD-based techniques, known as ICEEMDAN [18], has proven

effective in addressing these aforementioned challenges. As such, we employ ICEEMDAN for the extraction of

heartbeat patterns in our system.

By employing the ICEEMDAN decomposition method, as detailed in [18], we decompose the targeted SCG

signal into five distinct IMFs, as shown in Fig. 4(b). We note that the heartbeat signal is distinctly prominent

in IMF1, displaying marked periodic features. Consequently, we exclusively utilize IMF1 for the reconstruction

of the heartbeat signal. The result demonstrates that ICEEMDAN effectively eliminates the majority of noise,

specifically noise resulting from abrupt fluctuations occurring between 2.5 and 3.2 seconds. Nevertheless, due to

the pseudo-periodicity of heartbeat and instability of noise, ICEEMDAN is unable to completely eradicate all noise,

which necessitates further filtering procedures.

4.2 RLS-based Filtering
Although ICEEMDAN significantly reduces the influence of hand trembling, it does not entirely succeed in

eradicating them, resulting in the presence of residual noise. Consequently, this results in a segment of the signal

devoid of a clearly distinguishable pattern. In this subsection, we focus on further filtering out the effect of residual

movement artifacts.

Before employing the RLS filter, it is requisite to have a reference signal that embodies the ideal output or

anticipated state of the system. In contrast to the noisy period, the SCG morphology consistently displays periodic

features and a similar pattern during other silent periods. Thus, we can designate the signal within the quiescent

period as the reference signal. Now, how can we accurately identify and extract segments with similar patterns?

Our fundamental insight is that similar segments exhibit a high correlation, while dissimilar ones yield a lower

correlation. Upon this concept, our approach is outlined as follows: First, we divide the ICEEMDAN output

into 𝐾 segments. To ensure that each segment fully captures the holistic attributes of the SCG morphology, the

segment length is stipulated to lie within one to two periods. Then, for any two segments, we derive the similarity

by calculating the Pearson correlation coefficient [17] . Following this, we construct a 𝐾 × 𝐾 similarity matrix.

Segments with similarity exceeding an empirical threshold of 0.7 are considered as candidates. Finally, the segment

appearing most frequently in this candidate set is identified as the temporal reference, exemplified by the segment

from 8 to 9 seconds in IMF1, as depicted in Fig. 4(b). Then we further filter IMF1 according to the standard

process of the RLS filter [16] to remove the residual effects of movement artifacts. Fig. 4(c) illustrates a substantial

reduction in movement noise, resulting in a more discernible heartbeat pattern in contrast with the results obtained

solely using ICEEMDAN, as depicted in Fig. 4(b).

4.3 Residual Noise Removal
While the previous techniques prove highly effective in eliminating most of the movement noise, a small amount

of residual minor spike noise persists. In this paper, we introduce a lightweight denoising algorithm, referred

to as soft-thresholding [5, 22, 39], designed to further enhance the extraction of clear cardiac vibrations. The

denoising scheme is implemented through the following two steps. First, the algorithm computes the empirical

global threshold, as represented in [39], which can be expressed as follows:

𝜚 = 𝛿0
√
2 ln(𝑁 ), (1)

where 𝑁 represents the length of the data, and 𝛿0 denotes the noise level, defined as follows:

𝛿0 =
median( |𝑆𝑛 −median(𝑆𝑛) |)

0.6475
, (2)

where 𝑆𝑛 represents the value in the purified SCG sequence following the previous RLS filter. Next, we apply the

soft-thresholding technique to each element of the sequence, utilizing the chosen global threshold as follows:
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Fig. 4. Triple-stage noise reduction for cardiac pattern extraction.
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𝜈 (𝑛) = sign(𝑆𝑛) · ( |𝑆𝑛 | − 𝜚 )+. (3)

Here, 𝜈+ is defined as 𝜈 when 𝜈 ≥ 0 , and is 0 otherwise. It is important to note that this step assesses each

element based on its absolute value relative to the threshold. Elements that exceed the threshold 𝜚 are retained by

subtracting the threshold while preserving the original sign. This procedure effectively filters out low-amplitude

noise components and retains the primary characteristics of the signal. Consequently, the soft-thresholding technique

further refines the SCG signals, producing a more pronounced heartbeat pattern, as depicted in Fig. 4(d).

5 ENHANCEMENT OF DATA DIVERSITY
When the mobile phone’s accelerometer captures the SCG signal, our system will use its waveform characteristics

to infer BP with deep learning model. However, the accuracy of this recovery may be affected by a lack of diverse

training samples. In this subsection, we introduce two steps to ensure the data covers most potential situations.

The first step involves minimizing the variations in SCG amplitude to ensure that heartbeats collected under

diverse conditions exhibit consistent and comparable amplitudes. The amplitude of SCG signals depends on the

angle between the mobile phone’s y-axis and the user’s chest, the position of the mobile phone, and the pressure

applied to it. Since our system allows users to collect SCG signals in slightly different ways, we need to eliminate

these influences. As a result, the amplitudes of the SCG signals collected under various conditions differ from

one another. To validate this, we recruit a volunteer to collect 100 samples of SCG signals. Note that each sample

contained 10 seconds of data, corresponding to 1000 points at a sampling rate of 100 Hz. In each sample collection,

the volunteer was instructed to hold the smartphone against his chest at varying intensities, positions, and angles.

Note that “different intensities” here refers to the varying levels of pressure applied by the phone against the chest.

“Different positions” means areas within a 5 cm range to the left, right, and below the reference point. “Different

angles” refers to the phone being tilted up or down by no more than 45°. We observe that despite the consistency of

heartbeat waveform patterns across different situations, the range of amplitude significantly varies, influenced by

the angle, position, and pressure of the mobile phone. To reduce variations in SCG signals, we used the Min-Max

method to normalize SCG measurements to the same range, i.e., 0 ∼ 1.

The second step involves enriching the training samples by incorporating various starting points. Since different

starting points yield a variety of waveform patterns for a given length of sampled data, the limited number of samples

reflects a lack of variation in the data, thereby making the BP estimation challenging. To enhance data diversity, one

intuitive solution is to increase the number of random samples collected multiple times. However, this approach

is both labor-intensive and time-consuming. In our system, we introduce a temporal-sliding scheme to enhance

the diversity of the training data. This method involves calculating the dot product between a sliding window of

constant magnitude 1 and the collected SCG sequence. We utilize the result of each dot product as a new sample,

thereby incorporating new samples that encompass all possible starting points within a heartbeat cycle. For example,

when we collect 11 seconds of purified SCG data represented by the sequence [𝑆 (1), 𝑆 (2), ..., 𝑆 (1100)]. we perform

the dot product operation with a sliding window length of 1000 (10 seconds at a sampling rate of 100 Hz), we

can get 100 sample sequences through the dot product operation: [𝑆 (1), 𝑆 (1), ..., 𝑆 (1000)], [𝑆 (2), 𝑆 (3), ..., 𝑆 (1001)],
..., [𝑆 (100), 𝑆 (101), ..., 𝑆 (1099)]. Given that the typical cardiac cycle for most individuals ranges between 60 and

100 beats per minute, 100 consecutive sampling points are generally sufficient to cover the majority of potential

starting point scenarios. By leveraging the low-cost augmentation method, we can avoid overfitting and improve

the generalization performance of the system, thus further enhancing the capability of the system in BP estimation.
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Fig. 5. Performance of the quantitative BP estimation model.

6 DEEP LEARNING BASED BP MEASUREMENT
6.1 Limitations of Possible BP Models
6.1.1 Linear Correlation-based BP Model. A reasonable method for measuring BP involves quantitatively

assessing the relationship between BP and time intervals, a crucial feature of waveform. As we know, a complete

heartbeat cycle includes two phases: systole and diastole. During the systolic phase, the aorta circulates blood

throughout the body, reaching areas such as the fingertips and ears, while veins, during the diastolic phase, return

blood from these same regions back to the heart. Therefore, the interval between different states of the systolic and

diastolic phases is inversely related to the wave velocity. This implies that the time interval between varied states

within the systolic and diastolic phases could be characterized as a variant of pulse transit time (PTT), which is

employed as a basis for the quantitative estimation of BP. Thus, the relationship between BP and time interval can

be mathematically expressed as follows [26]:

𝐵𝑃 =
𝐾1

Δ𝜏
+ 𝐾2, (4)

where 𝐾1 and 𝐾2 are subject-specific parameters, and Δ𝜏 indicates the time interval between different states in the

cardiac cycle.

We carefully prove this assumption by delving into the following specific aspects: First, we recruited one

volunteer to perform various activities (to increase the range in BP), including walking, and jogging, followed by

remaining still for two minutes to measure their SCG and DBP. Subsequently, we collected 100 recordings of SCG

signals from the subject, while concurrently recording their BP using an Omron J751 BP monitor [2]. It should be

noted that one recording corresponds to a random heartbeat cycle captured within a collection period of 10 seconds.

For each SCG reading, we calculated the reciprocals of the intervals between critical cardiac states (such as AO

to AC, AO to MO, AO to RF). Due to space constraints, here we only demonstrate the relationship between the

reciprocal of the AO to MO interval and blood pressure. As demonstrated in Fig. 5(a), a distinct linear correlation is

observed between the reciprocal of the AO to MO interval and BP. Second, to further explore whether the intervals

within the heartbeat cycle can be used to predict BP and be applicable to a wider range of users, we hired 10

subjects to collect 300 SCG samples and ground truth BP readings each. For each subject, we used 100 of the

samples to train the subject-specific parameters (i.e., 𝐾1, 𝐾2) using the least square method for three different time

intervals (i.e., AO-AC, AO-MO, AO-RF), and the remaining 200 samples were used to calculate the measurement

error, which was determined by subtracting the reference DBP. Fig. 5(b) demonstrates that the BP measurement

model based on a linear relationship exhibits acceptable performance for all subjects. Specifically, for all subjects,

ME stays below 2.17 mmHg, and SD remains under 5.02 mmHg across all time intervals, both of which fall within

the acceptable error range established by Association for the Advancement of Medical Instrumentation (AAMI).
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Table 1. Performance comparison using different models on a commercial smartphone.

Model Params (M) FLOPs (G) Latency (ms) DBP Error (mmHg) SBP Error (mmHg) Memory (MB)

LeNet 0.23 0.05 20 2.08±9.23 −3.09 ± 10.80 51

ResNet50 15.96 11.09 1227 −0.99 ± 7.55 2.20 ± 8.11 187

Ours 0.28 0.21 44 0.93 ± 5.27 1.81 ± 5.91 56

Although we have already demonstrated that we can quantitatively estimate BP by capturing the time intervals

of each cardiac stage in the heart cycle based on the linear correlation method, this method has two significant

limitations. Firstly, as depicted in Figure 3, aside from the AO point, the amplitude of other points is generally

weak, which makes them susceptible to submersion and challenging to locate. Secondly,the parameters 𝐾1 and

𝐾2 vary among the linear correlation models of different subjects. Consequently, estimating the parameters for

different subjects requires the collection of a substantial number of samples, which is clearly inconvenient. Instead,

we aim to establish a robust correlation between BP and SCG patterns that is applicable to a broad range of subjects,

thus enabling high-precision BP prediction.

6.1.2 Existing Deep Learning Models. To bridge the correlation, our objective is to build an optimal deep

learning model 𝑓 ∗ to minimize the loss 𝐿(·) between the actual BP, i.e., 𝑌 , and the predicted BP, i.e., 𝑌 = 𝑓 (𝑋 ),
where 𝑋 denotes the purified SCG defined as 𝑋 = {𝑥𝑖 }𝑡𝑖=1, and 𝑡 denotes the SCG time steps. Hence, our BP

prediction problem is formulated as follows.

𝑓 ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑓

𝐿 (𝑌, 𝑓 (𝑋 )) . (5)

As aforementioned, we aim to deploy our system directly on commercial smartphones with accurate BP

measurement. Beyond accuracy, another critical factor, multiple measurements, should be carefully considered.

This is because BP measurement exhibits randomness, and averaging multiple measurements within the same period

can effectively reduce this randomness [46] (as detailed in Fig. 22, we have experimentally verified that multiple

measurements can effectively minimize measurement errors). Moreover, for hypertension patients, measuring BP

at various times throughout the day can reduce the risk of stroke [52]. Multiple measurements inevitably lead to

critical consumption of resources. However, the resources of smartphones are quite limited, hence, if we need to

implement BP monitoring on smartphones, we urgently require an accurate and lightweight deep learning model.

The state-of-the-art deep learning models (e.g., ResNet50) inherently involve a large number of floating number

operations (FLOPs) and millions of parameters in convolutional and fully-connected layers [14]. However, due to

resource constraints on smartphones (e.g., limited computational resources and memory), deploying the state-of-arts

can lead to critical resource overhead, resulting in massive memory footprint and high latency [72]. Besides, these

existing models are usually designed with a large number of layers to enhance model accuracy, but such complex

multiple-layer model structures may easily yield overfitting with accuracy drop when applied to sensing applications

[70]. A straightforward solution leverages a simple model with a small number of layers, but it may result in

underfitting with low accuracy due to the limited number of layers [50].

To quantify the performance of deploying the existing models on a smartphone (i.e., Samsung S10), we conduct

a preliminary study and examine both pre-trained LeNet and ResNet50 based on our BP dataset with detailed

specifications shown in Section 8.1. We also use the Leave-One-Out Cross-Validation (LOOCV) to evaluate

the performance using different models, incorporating data from 70 users. The results in Table 1 reveal that the

ResNet50 achieves a high model inference latency of 1227 ms on average and a large memory footprint of 187 MB

on average caused by a large number of parameters and FLOPs. Such high latency may be practically limited for

continual BP monitoring in real time. Although the LeNet achieves much lower latency and memory footprint (e.g.,
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Fig. 6. Accurate and resource-efficient BP model structure.

20 ms and 51 MB on average), it results in a high mean error of BP prediction due to the limited model structure.

Additionally, the model accuracy using ResNet50 is compromised by overfitting.

6.2 Accurate and Efficient BP Model Design
To address the challenges of resource overhead and low accuracy, we propose a new accurate and resource-

efficient BP model that enables lightweight model deployment with high accuracy and robustness on smartphones.

This capability is essentially achieved by the proposed resource-efficient model structure shown in Fig. 6. We also

apply a set of techniques to significantly reduce resource overhead and improve overall BP model performance,

including resource-efficient convolution, shortcut connection, and Huber loss.

6.2.1 Resource-efficient Convolution. The traditional design of the convolutional layer involves a large number

of computations for tensor operations (i.e., high FLOPs). The underlying issue is that each layer output is intensively

computed by performing channel-wise multiplications (i.e., using a single kernel to slide through all input channels)

between the kernels and the input data (i.e., purified SCG or feature maps), especially when the input data has

multiple channels and the filter size is large. Hence, it will result in high model inference latency when deployed on

a smartphone. To reduce the number of operations, we utilize efficient depthwise separable convolution (DSConv)

[15] in the proposed BP model. Technically, DSConv involves breaking down a standard convolution into two

separate operations: depthwise convolution (DwConv) and pointwise convolution (PwConv), formulated as follows.

DwConv (𝑘, 𝑖) =
𝑀−1∑
𝑚=0

𝑤 (𝑚,𝑘 ) ∗ 𝑥 (𝑖+𝑚,𝑘 ) ,

PwConv (𝑛, 𝑖) =
𝑁∑
𝑘

𝑤 (𝑖,𝑘 ) ∗ 𝑥 (𝑖,𝑘 ) ,

(6)

where 𝑘 and 𝑛 denote the number of output channels of DwConv and PwConv, respectively. 𝑖 denotes the channel

index, and 𝑤 denotes the weight of the kernel. Additionally, 𝑀 is the size of the kernel, and 𝑥 represents the input

tensor. Different from the standard convolution, DwConv enables efficient multiplications that each input channel

is convolved separately using its own kernel. This captures features independently for each input channel. While

PwConv uniquely involves applying a 1x1 kernel to create linear combinations of the DwConv’s output. This

effectively combines features across different input channels, enabling the model to learn complex relationships
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between the channels. By both DwConv and PwConv operations, DSConv is mathematically represented as below.

DSConv(𝑤𝑑 ,𝑤𝑝 , 𝑆) =
𝑁∑
𝑘

𝑤𝑝 (𝑖, 𝑘) ·
(
𝑀−1∑
𝑚=0

𝑤𝑑 (𝑚,𝑘) · 𝑥 (𝑖 +𝑚,𝑘)
)
, (7)

where 𝑤𝑑 and 𝑤𝑝 denote the kernel weights of DwConv and PwConv, respectively. 𝐷𝑆 represents the width of

feature maps, 𝐾 and 𝑁 denote the number of input and output channels of DSConv. Compared to the standard 1D

convolution with computational complexity of (𝑀 · 𝐾 · 𝑁 · 𝐷𝑆 ), DSConv can theoretically achieve a much lower

computational complexity due to the separate DwConv and PwConv. Specifically, the computational complexity of

DwConv is (𝑀 ·𝐾 ·𝐷𝑆 ), while the computational complexity of PwConv is (𝐾 ·𝑁 ·𝐷𝑆 ). Combining these operations

together, DSConv achieves a notable reduction in the computation of (𝑀 ·𝐾 ·𝐷𝑆 +𝐾 ·𝑁 ·𝐷𝑆 )/𝑀 ·𝐾 ·𝑁 ·𝐷𝑆 = 1
𝑁 + 1

𝑀
[32], which uses 2 to 3 times less computation than the standard 1D convolution. Therefore, powered by DSConv

and lightweight layer structure, our BP model achieves computationally resource efficiency, making the model fast

to train and infer on smartphones.

6.2.2 Shortcut Connection. Since a small number of convolutional layers may be limited to extracting a

comprehensive representation of features from the purified SCG, we essentially optimize our BP model with six

DSConv layers based on the experiments. However, one of our observations shows that the model may still be

subject to suboptimal performance due to the proposed number of layers. In traditional convolutional layers, the

feature maps are forward passed through layer by layer and backward learned from computed gradients. As the

number of layers increases, the gradients may be insufficiently learned (i.e., vanishing gradient problem) during

training, hence it may yield model performance degradation.

To mitigate this problem, we propose to add shortcut connections (i.e., residual connections) [71] between

the layers. Instead of complex layer-by-layer learning, the shortcut connection can create a direct mapping from

one layer to the target layer, bypassing one or more intermediate layers (i.e., identity mapping [30]). Hence, the

gradients can directly pass through the direct mapping to preserve gradient vanishing for sufficient weight learning.

Mathematically, the shortcut connection is formulated as follows.

𝑦 = 𝐹 (𝑥,𝑤𝑖 ) + 𝑥, (8)

where 𝑥 is the original input, and 𝐹 (𝑥,𝑤𝑖 ) is the learned direct mapping. Enabled by the shortcut connection, our

BP model can effectively learn both shallow-level input features and high-dimensional features from deeper layers,

resulting in enhanced model performance. In practice, we add a shortcut connection every 2 DSConv layers to

group the layers as 3 residual blocks shown in Fig. 6.
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6.2.3 Robust Training Schema. The performance of the learning loss function is critical to achieving high

model robustness. Especially, the relationship between the purified SCG and BP may be easily impacted due

to user and smartphone variations (i.e., subject-independent challenge) in SeismoBP. To enable a robust model

training schema, we essentially apply Huber loss [48] in our BP model. Theoretically, it combines the advantages

of the mean squared error (MSE) loss and the mean absolute error (MAE) loss, making it less sensitive to outliers

compared to MSE while maintaining some of the smoothness properties of MAE, formulated as follows:

𝐿 (𝑦,𝑦) =
{
1
2
(𝑦 − 𝑦)2 , 𝑖 𝑓

��𝑦 − 𝑦
�� < 1,��𝑦 − 𝑦

�� − 1
2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(9)

We utilize the AdamW optimizer [29] during the training process and apply the early stopping mechanism [36]

to optimize the model training. As a result, we propose a resource-efficient BP model to enable end-to-end BP

prediction by taking the purified SCG with high model accuracy and robustness.

7 IMPLEMENTATION
Our prototype works as a smartphone app that uses its built-in accelerometer to capture SCG signals for BP

measurement. We deploy the app on several commercial Android smartphones, i.e., Samsung Galaxy S5 with

Android 6.0 OS, Samsung Galaxy S10 with Android 10.0 OS, and Xiaomi 13 with Android 13.0 OS, as shown in

Fig. 7(a). We collect the accelerometer data from a smartphone and subsequently send it to a PC for processing.

The accelerometer’s sampling rate is set to 100 Hz which is sufficient to capture the frequency range of cardiac

activity. To obtain the ground truth of BP, we use an FDA-approved cuff-based BP measurement device (Omron

J751 [2]). Subjects are instructed to wear the cuff in a static setting, and the ground truth collected will be used as

labels for training the BP estimation model. The accelerometer recordings are collected and sent to a LENOVO

Y7000P PC through WiFi for processing using Python 3.11, i.e., denoising, enhancing data diversity, training the

deep learning model, and estimating BP values.

The training of our BP model is done using an NVIDIA A100 GPU with 80GB of graphics memory. The

specific parameter settings for the model include the following configurations within the Deep DsConv module: The

kernel size of DWConv is set at 1 × 3, and a stride size of 2 is employed, strategically reducing the feature size to

incrementally enhance the model’s performance. In the Deep DSConv module, we incorporate batch normalization

and ReLU activation functions. A dropout rate of 0.2 is employed to alleviate potential overfitting. The model is

trained using the Adam optimizer, employing an annealing learning rate that starts at 5e-3 and gradually decreases

to 2.5e-4. The training proceeds for 100 epochs, incorporating an early stopping strategy.
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8 EVALUATIONS
8.1 Experimental Setup

We conduct all experiments in a typical room setting, keeping a comfortable room temperature between 20

and 25 ◦C. We recruit a total of 70 volunteers (28 females and 42 males), weighing between 45 and 90 Kg and

aged from 22 to 83 years. The average age of the volunteers is 39 years, with an SD of 21. Among them, 35

are healthy, while the remaining 35 are diagnosed with high blood pressure, and some also have heart diseases

such as arrhythmia, unstable angina (UA), and right bundle branch block (RBBB), with 5 patients for each heart

disease. None of the volunteers have taken part in similar experiments before, and their heart rates range from

55 to 110 BPM, with an average of 76 BPM. We have obtained ethical approval from our institutional review

board (IRB) prior to conducting any experiments. We begin each experiment with a 5-minute briefing session to

introduce the experimental equipment and data collection methods. We ask volunteers to sit for 2 minutes in each

data collection session to guarantee reliable results. During each session, they are instructed to wear a BP monitor

cuff on their arm to measure BP, and simultaneously, they use a smartphone to collect SCG signals by pressing it

perpendicularly on their chest, as illustrated in Fig. 7(b). From the 2 minutes of accelerometer data, a 10-second

segment (comprising 1000 points at a 100 Hz sampling rate) is selected as one SCG sample, using the BP monitor

readings as a reference. Considering the short-term stability of blood pressure, a mandatory 10-minute break is

enforced between successive sessions to ensure variability in BP measurements. Therefore, each session has a

duration of 12 minutes and includes just a single sample. For each volunteer, we collected a total of 10 samples
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Fig. 11. Correlation of estimated DBP and reference across various models.
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Fig. 12. Correlation of estimated SBP and reference across various models.

daily, spanning over a period of 2 hours. We conduct data collection on different days and times, accumulating a

total of 100 samples for each subject. Unless stated otherwise, each subject takes part in all experiments, and we

employ LOOCV to assess the system’s performance using a user-independent data set. In detail, we divide the

SCG data into n groups corresponding to 𝑛 subjects, conducting testing through 𝑛 iterations. During each iteration,

we use the data from 𝑛 − 1 subjects as the training samples, reserving the data from the remaining subject as the

testing sample. In all experiments, we evaluate the system’s performance using ME between the BP, including SBP

and DBP, and the actual BP values, defined as 𝜇 =
∑𝑁

𝑛=1
𝑏𝑛−𝑏𝑛

𝑁 , where 𝑏𝑛 denotes the estimation, 𝑏𝑛 represents the

ground truth, 𝑁 denotes the total number of testing samples. We also use SD, defined as 𝛿 =
√∑𝑁

𝑛=1
(𝑏𝑛−𝑏𝑛−𝜇 )2

𝑁 , for

this evaluation.

8.2 BP Model Performance
8.2.1 Training Strategies. We first evaluate whether different training strategies for BP regression may impact

our model performance. We compare two training strategies–separated (i.e., separated models to estimate DBP

and SBP, respectively) and joint (i.e., one model to estimate DBP and SBP simultaneously). We also use the

leave-one-out cross-validation strategy detailed in Section 8.1. Since we apply the same input to estimate both DBP

and SBP, the training process for each of them is balanced by default. As shown in Fig. 8, the results indicate that

the performance of using separated models in both mean and standard error range aspects works notably better than

using a joint model. For instance, by applying the separated models, the standard error range of SBP is reduced

from 8.54 to 5.91, while the mean of SBP is also reduced from 2.17 to 1.81, and the standard error range of DBP

significantly decreases from 6.75 to 5.27. Hence, we consistently use the separated training strategy in the next

experiments.

8.2.2 Model Performance Comparison. We next conduct a comparative study between our model (Ours)

and alternative popular deep learning models, including ResNet50, Vision Transformer (ViT), Long Short-Term

Memory (LSTM), and Random Forest (RF) regression based on our dataset with detailed specifications shown in

Section 8.1. We also apply the same training hyper-parameters (e.g., optimizer, learning rate, drop rate, epochs, and

early stopping strategy) given in Section 7 to the baseline models as needed.
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Fig. 13. Overall performance for the all users.

We also use LOOCV to assess the performance using different models, incorporating data from 70 users. The

distribution of the measurement error is presented in Fig. 9(a). As illustrated in Fig. 9(b), for DBP, our model

achieves an ME of 0.93 mmHg and SD of 5.27 mmHg. In comparison, the ME values of ResNet50, ViT, LSTM,

and RF are -0.99 mmHg, -2.26 mmHg, 0.76 mmHg, and -1.51 mmHg, respectively, and their SD values are 7.55

mmHg, 6.05 mmHg, 6.85 mmHg, and 9.81 mmHg, respectively. For SBP, our model achieves an ME of 1.81

mmHg and SD of 5.91 mmHg, while the ME values of Resnet50, ViT, LSTM, and RF are 2.2 mmHg, -1.47 mmHg,

1.49 mmHg, and -1.41 mmHg, respectively, and their SD values are 8.11 mmHg, 7.27 mmHg, 7.59 mmHg, and

10.79 mmHg, respectively. It is evident that, for both DBP and SBP, our model achieves comparable performance to

LSTM in terms of ME, but our SD is significantly lower than that of other models. This demonstrates our system’s

robust capacity for extracting features from multi-sample data.

To enhance the comparison of our model with others, we further analyze the distribution of absolute measurement

errors (i.e., 𝑏𝑛 − 𝑏𝑛), as shown in Fig. 10(a), and calculated both the MAE (i.e., 𝜇′ =
∑𝑁

𝑛=1

���𝑏𝑛−𝑏𝑛 ���
𝑁 ) and the SD of

the absolute measurement errors (i.e., 𝛿 ′ =

√∑𝑁
𝑛=1

(
���𝑏𝑛−𝑏𝑛 ���−𝜇′ )2

𝑁 ), as depicted in Fig. 10(b). The results demonstrate

that, for both SBP and DBP, our model significantly outperforms other models in terms of both MAE and SD,

further highlighting the superior performance of our model.

Fig. 11 and Fig. 12 show the correlation between the measured DBP, SBP and reference BP, respectively. Here,

the X-axis represents the reference, and the Y-axis represents the measurement results. Points on the red line

indicate that the measured values are identical to the reference. Therefore, the closer the points are to the red line,

the smaller the measurement error. We observe that compared to the other four models, points in our model are

more closely clustered around the red line for both DBP and SBP, which indicates a closer correlation. The above

results further demonstrate the effectiveness of our model in measuring BP. Specifically, we find that the predictions

obtained from the RF model have a very low correlation with the reference points. Therefore, even if the results of

ME fall within the AAMI standards, they are not meaningful for reference.

To provide a deeper insight into our system’s performance, we present the Bland-Altman plots for both DBP

and SBP, as illustrated in Fig. 13. In these plots, the black line represents ME, while the red line delineates the

limits of agreement (LOA), defined as ME ± 1.96×SD. Significantly, these errors fall within the standard error

range established by the AAMI, which mandates that ME should not exceed 5 mmHg, and SD should not exceed 8

mmHg.
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Fig. 14. Impact of different motion states.

Normal Deep Intense
Breath amplitude 

-10

-5

0

5

10

Er
ro

r(m
m

H
g)

-10

-5

0

5

10

Er
ro

r(m
m

H
g)

DBP
SBP

Fig. 15. Impact of different breath amplitudes.
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Fig. 16. Impact of different pressing positions.
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Fig. 17. Impact of different angles.

8.3 Evaluation of Impact Factors
In this section, we assess the robustness of our system in measuring BP under the influence of various factors.

We use the original standardized data as training data and newly collected data under different conditions as the

testing data. For example, when evaluating the system’s performance in measuring variations due to different phone

angles relative to the chest, we use data collected at different angles as the test data.

Impact of previous motion states: In this section, we concentrate on evaluating the system’s performance in

measuring blood pressure during the recovery period following various motion states. Specifically, we instruct each

user to maintain three distinct motion states—sitting, walking, and running—and then collect data after a period

of 2 minutes. All samples collected from these motion states are utilized as the training dataset to guarantee the

diversity of the data. In detail, we collect 40 samples from each user in each of the motion states, amounting to a

total of 120 samples per user, to ensure each motion state contributes equally to the training model. Fig. 14 shows

that for DBP, the MEs after sitting, walking, and running states are 0.94 mmHg, -1.96 mmHg, and -2.08 mmHg,

respectively. For SBP, the MEs after sitting, walking, and running states are 0.7 mmHg, -1.36 mmHg, and 2.43

mmHg, respectively. The changes in heart rate after walking do not affect the BP measurement performance, but

the ME of SBP after running rises from 0.7 mmHg in a sitting state to 2.43 mmHg. This increase is mainly due to

the active state of the body after running, such as intense hand tremors, which render the accelerometer signal more

vulnerable to interference from bodily movement. Although running induces some error, the system still retains

enough accuracy to meet the demands of daily monitoring. These outcomes verify that our system delivers robust

blood pressure measurements during the recovery period after different motion states.

Impact of breath: We instruct volunteers to breathe at different amplitudes, including normal breath, deep breath,

and intense breath. The data collected during normal breath served as the standard training sample. As depicted in
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Fig. 18. Impact of different brands of phones.
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Fig. 19. Impact of different types of clothes.
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Fig. 20. Impact of different amplitudes of hand trem-
bling.
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Fig. 21. Impact of different time periods.

Fig. 15, the average DBP errors for normal breath, deep breath, and intense breath are 0.8 mmHg, 0.21 mmHg,

and 1.09 mmHg, respectively. The respective average errors for SBP are -0.31 mmHg, 3.54 mmHg, and 4.78

mmHg. With the increase in breath intensity, the error in BP also increases correspondingly, mainly because intense

breath is usually accompanied by intense body movements. Although the error has increased, the mean error and

standard deviation is still within the AAMI range. Therefore, our system can withstand the effects of different

breath amplitudes. Additionally, by incorporating samples from intense breath into the training set, we can further

improve BP measurement performance.

Impact of pressing position: To evaluate the impact of the pressing position on BP measurement, we initially

designate the reference point’s location on the subject’s clothing, specifically at the center of the sternum. Then, we

instruct the subject to press 5 cm left, right, up, and down from the reference point to measure the BP. Note that

the samples collected from the reference point serve as training data, while those from other positions are used as

testing data. As shown in Fig. 16, the error on the left side is close to the reference point, which is consistent with

the fact that the heart is located on the left side of the chest. Nevertheless, the performance at the other three points

diminishes to different extents, mainly because of a decrease in the SCG signals’ amplitude. Overall, except for the

position 5 cm above the reference point, the measurement performance near the reference point is sufficient to meet

the needs of daily monitoring.

Impact of phone angle: To investigate the impact of phone angle on system performance, we positioned the phone

at various angles against the chest, ranging from -45° to 45°. We defined the angle as 0° when the user held the

phone vertically against the chest. When the phone is oriented upward, the angle is considered positive, and when

facing downward, it is considered negative. As shown in Fig. 17, the system demonstrates high accuracy within a

range of -30° to 30°, indicating that the heartbeat pattern is minimally affected by phone angle within this range.
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Fig. 22. Impact of various numbers of measurements.

However, as the angle continues to increase to -45° and 45°, the impact gradually increases, resulting in larger

errors. This is mainly because the heartbeat activity is primarily concentrated in the front, allowing the phone to

collect signals with higher SNR within a smaller angle range, while the SNR decreases in a larger range. Even with

the worst average errors (i.e., DBP of -3.86 mmHg and a SBP of -1.8 mmHg), both the mean error and standard

deviation remain within the AAMI standard range, thus meeting the criteria for daily monitoring.

Impact of phone type: We deploy our system on three smartphones, namely Samsung Galaxy S10, Samsung

Galaxy S5, and Xiaomi 13, to investigate the capability of various phone modules in estimating BP. Note that

the training data is exclusively collected from the Samsung Galaxy S10. In this part, we collect new data from

three different types of smartphones, which are then utilized as testing data for comparison. As shown in Fig. 18,

the average errors in DBP for the three phones are 1.41 mmHg, -1.53 mmHg, and 2.31 mmHg, respectively, and

the average errors in SBP are -0.42 mmHg, 2.15 mmHg, and 3.08 mmHg, respectively. Although Xiaomi 13 had

more noise compared to Samsung Galaxy S10 and Samsung Galaxy S5, its BP prediction performance is on par

with the other two modules. This is mainly attributed to our triple-stage noise reduction scheme, which effectively

eliminated system noise. Overall, the experimental results demonstrate the effective deployment capability of our

system across different types of smartphones.

Impact of cloth type : To simulate clothing for different seasons, we have volunteers wear T-shirts, coats, and

sweaters respectively while collecting acceleration data. We use the data collected while wearing T-shirts as the

standard training data. Fig. 19 shows that the average interval errors of the three garments are nearly identical, with

the maximum average errors for DBP and SBP being 0.96 and 2.68, respectively. Although an increase in clothing

thickness may cause a slight rise in measurement error, our system still possesses the ability to accurately predict

BP.

Impact of hand trembling: To assess our system’s resilience to artificial noise, we instruct subjects to shake their

mobile phones at three distinct intensities—normal, light, and intense—during the course of the experiment. The

data collected under normal conditions is utilized as the standard training set, while the data corresponding to the

two other amplitudes are only employed as the test set. As illustrated in Fig. 20, the measurement error of BP

grows with an increase in amplitude of hand trembling. When an intensive hand trembling occurs, the system’s

measurement error exceeds the AAMI standard range. However, during light hand trembling, the system still

demonstrates excellent BP prediction performance, mainly attributable to our triple-stage noise reduction scheme,

which effectively filters out the impact of movement artifacts.

Impact of time period: To investigate the system’s stability throughout the day, we collect BP data from users at

various times. Fig. 21 demonstrates that our system exhibits high stability at various times throughout the day. This
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Fig. 23. Performance for the patient with high blood pressure.

stability can primarily be attributed to the fact that the heartbeat pattern remains consistent, despite fluctuations

in BP over the course of the day. Consequently, this indicates that our system possesses strong robustness across

different time periods.

Impact of the number of measurements: To explore the impact of number of measurements on system perfor-

mance, we collect a range of samples from each user, varying from 1 to 60, and then analyze their measurement

errors. As shown in Fig. 22, with the increase in the number of measurements, the average ME continuously

decreases while the SD first decreases and then increases. After reaching 30 measurements, both tend to converge.

The changes in ME and SD are reasonable: at the beginning, when the number of measurements is small, the data

randomness is relatively high. As the number of measurements reaches a certain level, the data tends to stabilize.

These results indicate that continuous measurements of 30 times or more can result in the stabilization of our

system’s performance. Note that our initial measurement requires the collection of 10 seconds of SCG data, yet

the system’s response time is measured in milliseconds. Additionally, the interval between measurements is kept

to just 1 second to ensure timely data refreshment. Consequently, the total time required for 30 measurements is

approximately 40 seconds, which is acceptable for daily monitoring applications.

8.4 Ablation Study
To investigate the effectiveness of technologies in the signal preprocessing part, we conduct ablation study on

four key steps in the noise reduction: ICEEMDAN, RLS-based filter, soft-thresholding, and data enhancement.

Specifically, we conducted a reprocessing of the original data. This involved removing the corresponding techniques

to create new training and testing datasets for additional four deep learning models, respectively. Subsequently, we

re-evaluated the data from 70 users (100 samples per user) using LOOCV, as detailed in Section 8.1. As shown in

Fig. 24(a), for DBP, our system’s ME is 0.93 mmHg, whereas the MEs after removing ICEEMDAN, RLS-based

filter, soft-thresholding, and data enhancement are -1.22 mmHg, -2.15 mmHg, -1.05 mmHg, and -2.53 mmHg,

respectively. Correspondingly, the SD increases from 5.27 mmHg to 7.1 mmHg, 9.01 mmHg, 6.53 mmHg, and

7.44 mmHg, respectively. Additionally, as shown in Fig. 24(b), for SBP, our system’s ME is 1.81 mmHg, while

the MEs after removing ICEEMDAN, RLS-based filter, soft-thresholding, and data enhancement are 2.98 mmHg,

3.8 mmHg, 2.06 mmHg, and 4.4 mmHg, respectively. The SD also changes from 5.92 mmHg to 7.5 mmHg, 8.93

mmHg, 8.41 mmHg, and 8.35 mmHg, respectively. These results adequately demonstrate that preprocessing related

technologies can significantly improve the performance of BP measurement. Particularly, the RLS-based filter and

data enhancement have a notably evident impact on performance improvement. This is mainly attributed to the

substantial reduction of movement artifact by the RLS-based filter and the effective increase in data diversity by

data enhancement.
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Fig. 24. Ablation study on noise reduction and data augmentation.

8.5 Case Study on Diseases
To further evaluate the measurement performance of our system, we recruit 35 hypertensive patients, of whom 15

have different heart diseases, including arrhythmia, unstable angina, and right bundle branch block, with 5 patients

for each condition. The purpose of this subsection is to explore whether our system can effectively measure BP in

patients with relevant cardiovascular diseases. We adopt a leave-one-out cross-validation strategy, as detailed in

Section 8.1. For example, to evaluate the performance of the system in arrhythmia, we conducted 5 tests, using

the data of one patient as the test set and the data of the remaining 69 subjects as the training set in each iteration.

Finally, we collate all the results to evaluate the overall performance of the system.

Hypertension: In this study, we investigate whether the system can accurately measure blood pressure for 35

hypertensive patients. According to the latest hypertension standards set by the American Heart Association [3],

individuals with DBP>=80 and SBP>=130 are diagnosed with hypertension. To elucidate the system’s measurement

proficiency, we specifically assess the BP readings of hypertensive patients upon meeting these criteria. It should

be noted that hypertensive patients regularly take medication to control their condition, so they may not necessarily

experience high blood pressure during the experiment. As a result, our data collection shows that SBP samples

are typically less than 150 and DBP samples are less than 100. When BP is too high, patients may experience

symptoms such as dizziness and palpitations, which can exacerbate their discomfort during data collection. We

present the Bland-Altman plots for SBP and DBP, as shown in Fig. 23. In the figure, the black line denotes ME,

while the red line signifies LOA. The results indicate that the ME and SD for DBP are -3.43 mmHg and 5.63

mmHg, respectively, while those for SBP are -1.83 mmHg and 6.52 mmHg. Compared to the overall performance

in Section 8.2.2, this result is slightly lower, mainly due to fewer hypertension samples, resulting in a lack of

sample diversity (only accounting for 28.8% of the total samples). We believe that increasing hypertension samples

can further improve the results. Overall, the current measurement performance conforms to the AAMI standards

for mean error and standard deviation.

Arrhythmia: Arrhythmia refers to an abnormality in heart rhythm, primarily categorized into tachycardia, brady-

cardia, and sinus arrhythmia. Such abnormalities typically lead to variations in the intervals between heartbeats. As

our system relies on the waveform characteristics of heartbeats to estimate BP, it’s crucial to further investigate

its measurement accuracy for hypertensive patients with arrhythmias. We assess five hypertensive patients with

arrhythmias: one with tachycardia, one with bradycardia, and three with sinus arrhythmias. As illustrated in Fig. 25,

the ME for DBP and SBP are -0.46 mmHg and 0.25 mmHg, respectively, with corresponding SD of 5.81 mmHg

and 6.05 mmHg. These findings suggest that our system can accurately measure the BP of such patients.

Unstable angina: Unstable angina is a type of coronary cardiac disease, primarily manifested as chest pain or

discomfort caused by transient myocardial ischemia. Hypertension is closely related to it and may lead to the

occurrence of unstable angina. Compared to a healthy individual, the patient’s heartbeat pattern exhibits significant
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Fig. 25. Performance on different cardiac diseases.
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Fig. 26. Performance on commercial devices.

variations. For example, the Electrocardiograph (ECG) of patients with this condition typically exhibits noticeable

waveform changes, such as T-wave inversion. As depicted in Fig. 25, from the analysis of data collected from five

patients diagnosed with both unstable angina and hypertension, we observe that the ME and SD for DBP are 1.47

mmHg and 5.11 mmHg, respectively. For SBP, these values are -2.48 mmHg and 5.21 mmHg, respectively. These

results confirm that our system can accurately measure the BP of such patients.

Right bundle branch block: RBBB represents a disruption in the heart’s right bundle branch conduction system,

hindering the efficient transmission of electrical signals to the ventricles. Under this condition, the patient’s cardiac

rhythm exhibits specific changes, such as the T wave being opposite in direction to the QRS wave. Chronic

hypertension may cause left ventricular hypertrophy and cardiac remodeling. These changes can alter the heart’s

electrophysiological properties, leading many hypertensive patients to develop RBBB. Based on this, we investigate

whether our system could accurately measure BP in such patients. We analyze the data from 5 patients diagnosed

with both RBBB and hypertension. As depicted in Fig. 25, the ME and SD values for DBP stand at 0.38 mmHg and

4.44 mmHg, respectively. For SBP, the values are 1.24 mmHg and 3.02 mmHg. Our results validate that our system

offers a high degree of accuracy in monitoring BP for patients afflicted with unstable angina and hypertension.

8.6 Case Study on Commercial Devices
To validate the versatility of our model across different platforms, we conduct an experiment involving 10 new

subjects. We position a Samsung Watch5 and a commercial accelerometer sensor, WT901WIFI [4], on the chests

of the subjects to capture SCG signals. Given the disparate sampling rates of the watch, accelerometer sensor, and

smartphone accelerometer, we employ spline interpolation to standardize their sampling rates. Subsequently, we

assess the BP measurement accuracy for the 10 subjects using the BP model, which is trained on Samsung Galaxy

10 data. It is important to note that the model has not been exposed to the data from any of the subjects prior to

this, and this data is exclusively used for testing purposes. As depicted in Fig. 26, the system demonstrates high

measurement accuracy for both the watch and the accelerometer sensor, confirming the viability of our system for

cross-platform BP measurement.

9 SYSTEM LATENCY AND POWER CONSUMPTION

System latency: Our system achieves low latency, rendering it suitable for real-time blood pressure monitoring. We

deploy the system on a Samsung Galaxy S10 smartphone, outfitted with a 2.9 GHz octa-core Qualcomm SM8150

Snapdragon CPU. Our implementation employs a dual-thread architecture, comprising a display thread and a blood

pressure measurement thread. For processing SCG signals, our system utilizes a buffer that accommodates 640 data

samples (equivalent to 6.4 s), updating it every 4 s to ensure the application delivers 10 measurement results within

a window of 40 s. Across 100 measurements, our system consistently requires an average of 18.9 ms to implement
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the triple-stage noise reduction technique on buffer data. The time needed for blood pressure measurement via a

deep learning model amounts to 45.68 ms. Consequently, the overall latency of our system stands at a mere 18.9 +

45.68 = 64.58 ms (substantially under 4 s), a duration wholly suitable for real-time blood pressure monitoring.

Power consumption: Our system demonstrates efficient energy consumption, averaging 182.2 ± 8.6 mW on

commercially available smartphones. We employ PowerTutor [67] to assess the power utilization of our system on

Samsung Galaxy S10. The average power consumption is evaluated over a two-hour period, segmented into six

20-minute sessions. During each session, the user executes 20 blood pressure measurement operations. Excluding

the power consumed by the LCD display, the observed average CPU power consumption stands at 182.2 ± 8.6 mW.

10 DISCUSSION AND FUTURE WORK
Currently, our system faces three issues that need to be addressed:

Large-scale movements: Although our system’s three-step denoising scheme can mitigate the impact of general

movements, including deep breathing and hand tremors, it remains ineffective at accurately reconstructing heartbeat

waveforms to estimate blood pressure in the presence of large-scale movements, such as running or walking. In

future work, we will resort to more advanced noise reduction schemes to enhance the system’s robustness.

Unseen heart diseases: Our blood pressure system can accurately predict cross-subject blood pressure for diseases

present in the training set, but it performs poorly with previously unseen disease types. This is primarily because

different heart diseases correspond to different heartbeat patterns. In the future, we need to collect data from patients

with a variety of heart diseases to broaden the system’s applicability.

Phone types: So far, our system has only been validated on three Android phone types, which is insufficient. In the

future, we need to validate our system on a wider range of phone types, and additionally, we need to develop a

blood pressure measurement system for iOS to ensure the system’s applicability across most brands.

11 CONCLUSION
This paper presents a novel sensing system that captures SCG signals using smartphone’s built-in accelerometer,

facilitating accurate BP measurement. Our system outperforms previous mobile phone-based BP measurement

systems by offering high SNR, ease of use, and power efficiency. To reconstruct high-quality heartbeat waveforms

from noisy SCG signals, we propose a triple-stage noise reduction scheme that incorporates ICEEMDAN, RLS

adaptive filtering, and soft-thresholding. In addition, we propose a data augmentation technique involving normal-

ization and temporal-sliding to augment the diversity within the training sample set. To ensure battery efficiency

on smartphones, we introduce a resource-efficient deep learning model which incorporates resource-efficient

convolution, shortcut connections, and Huber loss. We successfully deploy our system on three smartphone models

and evaluate its performance through extensive experiments with 70 volunteers, including 35 healthy and 35

hypertensive individuals, in a user-independent scenario. Experimental results confirm that our system is robust and

accurate for daily BP measurement.
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[60] Szymon Sieciński and Paweł Kostka. 2018. Determining heart rate beat-to-beat from smartphone seismocardiograms: Preliminary studies.

In Innovations in Biomedical Engineering. Springer, 133–140.

[61] J Talts, R Raamat, K Jagomägi, and J Kivastik. 2011. An influence of multiple affecting factors on characteristic ratios of oscillometric

blood pressure measurement. In Proceedings of Springer NBC.

[62] Simi Susan Thomas, Viswam Nathan, Chengzhi Zong, Ebunoluwa Akinbola, Antoine Lourdes Praveen Aroul, Lijoy Philipose, Karthikeyan

Soundarapandian, Xiangrong Shi, and Roozbeh Jafari. 2014. BioWatch—A wrist watch based signal acquisition system for physiological

signals including blood pressure. In Proceedings of IEEE EMBC.

[63] María E Torres, Marcelo A Colominas, Gaston Schlotthauer, and Patrick Flandrin. 2011. A complete ensemble empirical mode

decomposition with adaptive noise. In Proceedings of IEEE ICASSP.

[64] Edward Jay Wang, Junyi Zhu, Mohit Jain, Tien-Jui Lee, Elliot Saba, Lama Nachman, and Shwetak N Patel. 2018. Seismo: Blood pressure

monitoring using built-in smartphone accelerometer and camera. In Proceedings of ACM CHI.
[65] Yinan Xuan, Colin Barry, Jessica De Souza, Jessica H Wen, Nick Antipa, Alison A Moore, and Edward J Wang. 2023. Ultra-low-cost

mechanical smartphone attachment for no-calibration blood pressure measurement. Scientific Reports 13, 1 (2023), 8105.

[66] Yukino Yamaoka, Jiang Liu, and Shirgeru Shimamoto. 2019. Detections of pulse and blood pressure employing 5G millimeter wave

signal. In Proceedings of IEEE CCNC.

[67] Z Yang. 2012. Powertutor-a power monitor for android-based mobile platforms. EECS, University of Michigan, retrieved September 2

(2012), 19.

[68] Youngzoon Yoon, Jung H Cho, and Gilwon Yoon. 2009. Non-constrained blood pressure monitoring using ECG and PPG for personal

healthcare. Journal of medical systems 33 (2009), 261–266.

[69] Peyman Yousefian, Sungtae Shin, Azin Sadat Mousavi, Ali Tivay, Chang-Sei Kim, Ramakrishna Mukkamala, Dae-Geun Jang, Byung Hoon

Ko, Jongwook Lee, Ui-Kun Kwon, et al. 2020. Pulse transit time-pulse wave analysis fusion based on wearable wrist ballistocardiogram

for cuff-less blood pressure trend tracking. IEEE Access 8 (2020), 138077–138087.

[70] Kaja Fjørtoft Ystgaard, Luigi Atzori, David Palma, Poul Einar Heegaard, Lene Elisabeth Bertheussen, Magnus Rom Jensen, and Katrien

De Moor. 2023. Review of the theory, principles, and design requirements of human-centric Internet of Things (IoT). Journal of Ambient
Intelligence and Humanized Computing (2023).

[71] Ke Zhang, Miao Sun, Tony X. Han, Xingfang Yuan, Liru Guo, and Tao Liu. 2018. Residual Networks of Residual Networks: Multilevel

Residual Networks. IEEE Transactions on Circuits and Systems for Video Technology (2018).

[72] Yu Zhang, Tao Gu, and Xi Zhang. 2020. MDLdroidLite: a Release-and-Inhibit Control Approach to Resource-Efficient Deep Neural

Networks on Mobile Devices. In Proceedings of ACM SenSys.

[73] Heng Zhao, Xu Gu, Hong Hong, Yusheng Li, Xiaohua Zhu, and Changzhi Li. 2018. Non-contact beat-to-beat blood pressure measurement

using continuous wave Doppler radar. In Proceedings of IEEE/MTT-S IMS.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 57. Publication date: June 2024.




